
LA-UR-14-27640
Approved for public release; distribution is unlimited.

Title: Learning Tree-structured Approximations for Conditional Random Fields

Author(s): Skurikhin, Alexei N.

Intended for: the Applied Imagery Pattern Recognition (AIPR) annual workshop,
2014-10-14/2014-10-16 (Washington DC, District Of Columbia, United
States)

Issued: 2014-11-18 (rev.3)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Proceedings of the 2014 IEEE Applied Imagery Pattern Recognition Workshop, 1416 October, Washington DC.

978-1-4799-5921-1/14/$31.00 ©2014 IEEE

Learning Tree-structured Approximations for

Conditional Random Fields

Alexei N. Skurikhin

Intelligence Space and Research Division

Los Alamos National Laboratory

Los Alamos, NM 87545, USA

alexei@lanl.gov

Abstract—Exact probabilistic inference is computationally

intractable in general probabilistic graph-based models, such as

Markov Random Fields and Conditional Random Fields (CRFs).

We investigate spanning tree approximations for the

discriminative CRF model. We decompose the original

computationally intractable grid-structured CRF model

containing many cycles into a set of tractable sub-models

using a set of spanning trees. The structure of spanning trees

is generated uniformly at random among all spanning trees

of the original graph. These trees are learned independently to

address the classification problem and Maximum Posterior

Marginal estimation is performed on each individual tree.

Classification labels are produced via voting strategy over the

marginals obtained on the sampled spanning trees. The learning

is computationally efficient because the inference on trees is

exact and efficient. Our objective is to investigate the

capability of approximation of the original loopy graph

model with loopy belief propagation inference via learning a

pool of randomly sampled acyclic graphs. We focus on the

impact of memorizing the structure of sampled trees. We

compare two approaches to create an ensemble of spanning trees,

whose parameters are optimized during learning: (1) memorizing

the structure of the sampled spanning trees used during learning

and, (2) not storing the structure of the sampled spanning trees

after learning and regenerating trees anew. Experiments are

done on two image datasets consisting of synthetic and real-world

images. These datasets were designed for the tasks of binary

image denoising and man-made structure recognition.

Keywords—conditional random field; belief propagation;

inference; spanning tree

I. INTRODUCTION

Complex event and object recognition requires analysis of
massive quantities of data to detect and identify static or
dynamic patterns. One challenge for automated object
recognition, and machine learning in general, arises from the
fact that in spite of growing quantities of data, object
recognition often remains ill-posed, particularly for low signal-
to-noise ratios. The object recognition ambiguity can be
addressed by exploiting the fact that events and objects rarely
occur in isolation; they tend to co-occur and co-vary, and this
correlation structure, known as context, provides important
information for the disambiguation of the event (Fig.1). This
problem of object disambiguation is extremely common in a
broad spectrum of applications, such as computer vision, social

network analysis, bioinformatics, text analytics, and the
semantic web. For example, classification of Web documents
can be improved by augmenting analysis of the Web page text
with the page hyperlinks that define relations to other Web
pages. From a broader perspective, recognition and
disambiguation of interrelated objects can be posed as
structured machine learning. The goal is learning structured
hypothesis from data with internal structure in the form of one
or more relations and global constraints in the problem input
and output domains, a set of observables X and a set of output
random variables 𝑦𝑖 ∈ 𝒀 , respectively. The variable 𝑦𝑖 is
assumed to take a value from a finite label set 𝑆𝑖 =
{𝑠1, 𝑠2, … , 𝑠𝑚𝑖

} with cardinality m. For example, in a case of

binary classification the variables have two states, 𝑦𝑖 = {0,1}
and may correspond to object classes such as images of man-
made objects and images of nature scenes. With structure
present in the problem output domain, which consists of
multiple interdependent labels 𝑦𝑖 ∈ 𝒀 that have to be assigned
to objects, recognition of objects is done by jointly labeling all
the output variables simultaneously. In such an approach each
object or object component acts as context for others by
mutually facilitating and constraining interpretation of each
other. This collective classification exploits interdependence
between the output variables and is in contrast to “standard”
methods of machine learning, where input observed instances
are mapped to labels independently of each other.

Undirected probabilistic graphical models such as Markov
Random Fields (MRFs) and Conditional Random Fields
(CRFs) are being increasingly used to model problems having
a structured domain and to enable probabilistic inferences such
as answering queries about the variables of interest (e.g.,
labeling of output variables). A key task of probabilistic
inference is to compute the probability distribution over the
unobserved variables 𝑦𝑖 ∈ 𝒀 given the observed values of other
random variables (the evidence) and accounting for prior
beliefs.

There is one overreaching problem for structured machine
learning in undirected graphical models: developing
computationally tractable learning and inference methods.
Challenges are due to the computational intractability of exact
inference over general graphs with many variables which is
often the case in most real-world scenarios. Hence, there is a
need to find ways to reduce the cost of inference both at

(a) (b)

Fig. 1. An illustration of context priming for recognition: (a) with only information from a small region, the object is not recognizable (left), by adding the

object’s context, recognizing the car becomes possible (right); (b) what may appear as spiders (left), when viewed alone out of the surrounding context,
becomes the top burner grates for gas range, when viewed in the context of the whole scene (right).

learning time and at run time. In this work, we focus on the
problem of approximation of learning and inference in grid-
structured CRF-based probabilistic model via ensemble of
randomly generated spanning trees.

The CRFs are the discriminative models [1]. While MRF
models the joint distribution 𝑃(𝑿, 𝒀), CRF directly models a
conditional distribution 𝑃(𝒀|𝑿) and avoids modeling the
distribution over the variables in X, 𝑃(𝑿). The CRF-based
approach allows one to relax the assumption of conditional
independence of the observed data often used in generative
approaches, such as MRF, and makes it possible to incorporate
almost arbitrary feature vector representations of the observed
data points thus facilitating complex context modeling. The
CRF model with strictly positive probability distribution
can be parameterized in the form of an exponential family.
This model is factorized according to a graph G consisting
of a set of nodes, V, corresponding to random variables 𝑦𝑖 ,
and a set of undirected edges, E. By the Hammersley-
Clifford theorem [2][3] the conditional distribution can be
given in a factored form as:

𝑃(𝒀|𝑿; 𝜽) =
1

Z(𝑿; 𝜽)
exp(−𝑈(𝒀, 𝑿, 𝜽)) =

1

Z(𝑿; 𝜽)
∏ Φ𝑐(𝒀𝒄, 𝑿𝒄; 𝜽)𝐶

𝑐=1 ,

(1)

where 𝜽 are model parameters; Z(𝑿; 𝜽) is a normalization
factor also known as the partition function and is, in general,
intractable to compute; 𝑈(𝒀, 𝑿, 𝜽) is the energy function,
which is the sum of clique potentials over all possible maximal
cliques, C, in the graph; Φ𝑐(𝒀𝒄, 𝑿𝒄; 𝜽) are positive factors
corresponding to maximal cliques in the graph, where a
maximal clique of a graph is a fully connected subset of nodes
that cannot be further extended. Factors are also referred as
potential functions or potentials. The normalization factor is
computed by summing over all possible assignments of Y in
the joint label space of all nodes Ω = 𝑆1 × 𝑆2 × … × 𝑆|𝑉|:

𝑍(𝑿; 𝜽) = ∑ ∏ Φ𝑐(𝒀𝑐
′ , 𝑿𝒄; 𝜽)𝐶

𝑐=1𝒀′∈Ω , (2)

Thus, CRF may be viewed as an MRF globally
conditioned on the observed data. In other words, CRF
makes independence assumptions among Y, but not among
X, that is when Y is conditioned on X, conditional
distribution of 𝑦𝑖 given its neighbors, defined by the graph
G, does not depend on other variables 𝑦𝑗 outside the

neighborhood of 𝑦𝑖 .

It is generally assumed that factors are represented using a
log-linear model and parameterized by means of an inner
product between the parameter vector 𝜽 and a feature function
that takes into account information relevant to the application
task. In this case the factor parameterization takes the form:

Φ𝑐(𝒀𝒄, 𝑿𝒄; 𝜽) = exp{𝜽𝑐
𝑇 ∙ 𝑓𝑐(𝒀𝒄, 𝑿𝒄)}, (3)

where 𝑓𝑐 is known as feature functions of factor c. In
applications, e.g. computer vision, a pairwise CRF model
is often used. This model takes into consideration only
unary and pairwise cliques. The distribution is then
defined as:

𝑃(𝒀|𝑿; 𝜽) =
1

Z(𝑿; 𝜽)
∏ 𝜓𝑖(𝒀𝑖, 𝑿; 𝜽𝑖)𝑖∈𝑉 ∏ 𝜓𝑖𝑗(𝒀𝑖, 𝒀𝒋, 𝑿; 𝜽𝑖𝑗)(𝑖,𝑗)∈𝐸 ,

(4)

where 𝜓𝑖 and 𝜓𝑖𝑗 are clique factors. In the context of the

classification task, 𝜓𝑖 is the association potentials defined over
the node that measures the support for class label 𝑦𝑖 of node i,
and the pairwise potentials 𝜓𝑖𝑗 defined over graph edges are

the interaction potentials that represent “compatibility”
between the different label assignments to the nodes i and j. In
computer vision tasks, for instance, the node 𝑦𝑖 can represent a
random variable that is a label corresponding to an individual
pixel patch and 𝑥𝑖 is a feature vector containing color
characteristics of this pixel patch. Due to lack of restrictions on
𝑥𝑖, it can include characteristics of neighboring patches as well.
In the example above, the interaction potential might estimate
similarity of neighboring pixel patches in terms of their color
features as well as compatibility of their labels.

Learning the CRF model corresponds to finding the model
parameters, 𝜃∗ , that maximize the conditional log-likelihood
objective, L, on the training data D:

𝜃∗ = arg max𝜃 𝐿(𝐷, 𝜽) =

arg max𝜃 (
1

|𝐷|
∑ log 𝑃(𝒀|𝑿; 𝜽)(𝑿,𝒀)∈𝐷 − 𝜆 ∙ ‖𝜽‖2) ,

(5)

where the regularization penalty term 𝜆 ∙ ‖𝜽‖2 (𝜆 = 1 2𝜎2⁄)
is a Gaussian prior imposed on the parameters to control
for overfitting. Estimation of the gradient of the log-
likelihood objective requires computing marginals and is
usually not tractable due to the presence of the partition
function. Once the model is learned, inferring classification
labels is done using either maximum a posteriori (MAP) or the
maximum posterior marginals (MPM) criteria that, similar to

Fig. 2. Illustration of two spanning trees corresponding to a 5×7 grid graph. (Left) Original graph, (Center and Right) two randomly generated spanning

trees.

learning, require computing marginals and the partition
function. Computationally efficient inference is crucial for
learning as the inference has to be done many times in the
course of training.

There are several cases when inference is tractable. They
include tree structured graphs [4], graphs with low treewidth
[5,6,7,8], and binary pairwise Markov Random Fields (MRFs)
with submodular energy constraints [9]. The complexity arises
due to the intractability of inference in general graphs for
which it is known to be NP-hard [10, 11, 12]. Different
approaches to approximate inference have been proposed. The
pseudo-likelihood approach approximates the true likelihood
objective with a factorization of the local conditional
likelihoods [13, 14]. Piecewise pseudo-likelihood takes the
idea of pseudo-likelihood further by decomposing a graphical
model into pieces, each of which is trained separately and then
combined into a model [15, 16]. The blocked contrastive
divergence approach uses sampling of tree-structured blocks to
approximate the gradient of the likelihood with the gradient of
the composite likelihood [17].

A frequently used approach for approximate inference is
loopy belief propagation (LBP), in which belief propagation is
applied to the graph, even if it is not a tree [4]. However, LBP
is not guaranteed to converge and when it converges the result
is not guaranteed to be a unique fixed point. One of the well-
known approaches to approximate the inference is tree-
reweighted message passing (TRW) that decomposes the MAP
estimation problem over a loopy graph into tractable
subproblems over acyclic subgraphs and then employs
message passing over trees to combine solutions [18]. The
original TRW approach was modified into sequential tree-
reweighted message passing scheme (TRW-S) that addressed
the lack of convergence in the TRW and tightened the lower
bound on the energy function [19].

Another approach to approximate the intractable loopy
graph model is via a mixture of spanning trees [20]. A set of
randomly sampled spanning trees is generated (Fig. 2). These
trees are learned separately to address the overall classification
problem and inference is then performed on each individual
tree. The learning is computationally efficient because the
inference on trees is exact and efficient. Classification
labels can be produced via voting strategy over MAP labels
obtained on the sampled spanning trees. In this work, we
empirically investigate the impact of memorizing the structure
of the sampled spanning trees used during learning. We
compare two approaches to create an ensemble of spanning
trees, whose parameters are optimized during learning: (1)

memorizing the structure of the sampled spanning trees used
during learning and, (2) not storing the structure of the sampled
spanning trees after learning. In the first approach, during test
phase we create an ensemble by reusing spanning trees with
the memorized structures and corresponding optimized sets of
tree parameters. In the second approach, we randomly
regenerate spanning trees anew and use the same set of
optimized parameters for all trees. Experiments were done on
two image datasets consisting of synthetic and real-world
images.

II. CRF TREE-STRUCTURED APPROXIMATION

A. Inference in tree-structured graphs

Inference is a fundamental problem that arises during
both the test and training phases. During training,
computing the gradient requires inference for the
computation of node and edge marginals, which can be
done efficiently for tree structured graphs or graphs with
small treewidth. Inference in tree-structured graphs can be
implemented efficiently using belief propagation that is an
iterative message passing algorithm for computing
approximate marginal distributions of each variable in a
graphical model [4]. The algorithm is based on the idea of
message passing along the edges of the graph, where the
message indicates how much each node should update its
belief based on the neighboring node’s current
information. In tree-structured graphs the message passing
schedule can be considered as a two-pass schedule, with
forward message propagation followed by backward
propagation. The algorithm begins by defining one of the
variables (nodes) as the root. In the forward sweep the
algorithm sends messages from leaves towards the root. In
the backward sweep the messages are propagated in the
opposite direction, from the root through tree edges to all
leaves. After the completion of the backward sweep, the
full set of messages over every edge in both directions is
estimated. This allows one to compute all the node and
edge (joint) marginals. The computational complexity of
the algorithm is 𝑂(𝑁𝑚2), where 𝑁=|𝑉| is the number of
node variables, and 𝑚 = max𝑖 𝑚𝑖. In loopy graphs, neither
convergence nor correctness of this procedure is guaranteed as
the message of one node can pass back to itself through the
loops; thus approximate methods, such as LBP, can be used.

The important question is how to choose trees to
approximate the original graphical model. The number of
spanning trees of the graph is exponential in the size of the
graph. The exact number of spanning trees can be
estimated using the matrix-tree theorem by evaluating the

determinant of the combinatorial Laplacian of the graph.
We take an approach that assumes a lack of prior
information on more optimal graph partitioning, or that
complex objects which have to be recognized do not show
any specific patterns in spatial arrangements of their
components, except possibly being closer to each other. It
is similar to a very general scenario of context-driven
recognition, when co-occurrence of individual components
facilitates recognition of each component by the others. In
the end, collective recognition of the components
facilitates the recognition of the whole object they
constitute. Therefore, we choose to randomly generate
spanning trees. Each of trees captures some aspect of the
original model. The use of randomly sampled trees allows
us to compensate to some extent for weakness of each of
the individual spanning trees. Spanning trees are generated
uniformly at random from among all spanning trees of the
original graph using the algorithm, introduced in [21], that
simulates a loop-erased random walk. The complexity of
this generation is 𝑂(𝜏̅), where 𝜏̅ is the mean hitting time of
a graph, which can be much smaller than the cover time of
a graph. In the case of memorizing the structure of
spanning trees, we generate a predefined number of trees
and then train every generated tree on the whole training
dataset. Classification is done by majority voting over the
pool of these stored trained trees. In the case of not storing
the structure of spanning trees, we randomly generate a
pool of spanning trees either anew for each data sample of
the training and test datasets, or we generate the pool once
for training and then randomly generate new pool before
testing begins.

B. Learning

For the tree-structured model efficient exact parameter
learning is possible. Parameters of every spanning tree are
optimized by maximizing the log-likelihood L on the
training data D. This optimization can be performed by
gradient-based methods. Using the log-linear model of
factors in equation (4) the conditional log-likelihood in
equation (5) can be rewritten as

𝐿 =
1

|𝐷|
∑ (log

1

Z(𝑿; 𝜽)
∏ exp{𝜽𝑐

𝑇𝑓𝑐(𝒀𝒄, 𝑿𝒄)}𝐶
𝑐=1) −(𝑿,𝒀)∈𝐷

𝜆 ∙ ‖𝜽‖2

(6)

 𝐿 =
1

|𝐷|
∑ ∑ 𝜽𝑐

𝑇𝑓𝑐(𝒀𝒄, 𝑿𝒄)𝐶
𝑐=1 −(𝑿,𝒀)∈𝐷

1

|𝐷|
∑ logZ(𝑿; 𝜽)(𝑿,𝒀)∈𝐷 − 𝜆 ∙ ‖𝜽‖2,

(7)

Differentiating the log-likelihood with respect to 𝜽 and
using equation (2), the partial derivative of the log-
likelihood with respect to 𝜽 is expressed as

𝜕𝐿

𝜕𝜃
=

1

|𝐷|
∑ 𝑓𝑐(𝒀𝒄, 𝑿𝒄) −

1

|𝐷|
∑

1

Z(𝑿; 𝜽)

𝜕Z(𝑿; 𝜽)

𝜕𝜃(𝑿,𝒀)∈𝐷 −(𝑿,𝒀)∈𝐷

𝜆 ∙ ‖𝜽‖,

(8)

The partial derivative of the second term with respect
to the parameter 𝜽 is computed as

1

|𝐷|
∑

1

Z(𝑿; 𝜽)(𝑿,𝒀)∈𝐷 ∑ (∏ exp{𝜽𝑐
𝑇𝑓𝑐(𝒀𝑐

′ , 𝑿𝒄)}𝐶
𝑐=1) ∙𝒀′∈Ω

∑ 𝑓𝑐(𝒀𝑐
′ , 𝑿𝒄) 𝐶

𝑐=1

(9)

=
1

|𝐷|
∑

1

Z(𝑿; 𝜽)(𝑿,𝒀)∈𝐷 ∑ 𝑃(𝒀′|𝑿) ∙ ∑ 𝑓𝑐(𝒀𝑐
′ , 𝑿𝒄)𝐶

𝑐=1𝒀′∈Ω ,

(10)

The first term in (8) is the expected value of f under the
empirical distribution and the partial derivative of the
second term is the expectation under the model
distribution. Thus, the derivative of the conditional log-
likelihood with respect to a parameter 𝜽 can be expressed
as a difference between the expected and observed feature
responses. The sums of the feature values f in (8) and (10)
are also known as sufficient statistics.

Computation of the gradient requires the marginal
probabilities, 𝑃(𝑌′|𝑋), which can be efficiently computed
in trees using the forward-backward algorithm discussed in
the previous section. The model parameters are initialized
using maximum likelihood estimation for the logistic
regression model. Then, we use a limited memory quasi-
Newton method, such as L-BFGS [22], to optimize the
parameters of the tree-structured CRF model.

When we memorize the structure of the spanning trees,
for every kept tree we optimize a corresponding set of
parameters. When we do not store the structure of
spanning trees, we optimize one set of parameters that is
used by all the spanning trees in the pool.

III. PERFORMANCE EVALUATION

We evaluate spanning tree structured approximations
for CRF on a number of synthetic and real-world image
datasets and compare it with the results presented in
[20,23,24,25], as well as with the results produced using a
logistic regression classifier and the grid-structured CRF
model with LBP inference. We use the same two datasets
that were used in [23,24]. Regularization of CRF node and
edge parameters is done with the corresponding values of
the regularization parameters 𝜆𝑛 , 𝜆𝑒. We search for 𝜆𝑛, 𝜆𝑒
in a grid like fashion on pairwise combinations 𝜆𝑛,
𝜆𝑒which are formed using a set of allowable 𝜆 = {0.001,
0.01, 0.1, 1, 10, 100}. We used one of the folds in the
training dataset corresponding to the problem of binary
image denoising that is presented in the next section.
Then, the same values of 𝜆𝑛, 𝜆𝑒 were used in the second
experiment on real-world images. We used 𝜆𝑛=0.001 and
𝜆𝑒 = 100, though other combinations were comparable to
the chosen one in terms of pixelwise classification error. In
all our experiments we initialize the model parameters
with zeroes and find starting estimates of the node
parameters using a logistic regression model, which are
then used in the follow-up training of the full model, e.g.
in the grid-structured CRF model with LBP inference.

A. Synthetic images: binary image denoising

We used the binary image denoising dataset that is
available in [23,24]. The dataset includes two subsets
containing images corrupted with either unimodal or
bimodal Gaussian noise. There are fifty 64×64 pixels noisy
image samples corresponding to one of the four reference

Fig. 3. Results of binary denoising task. From top: row 1: reference images, row 2: images corrupted with bimodal noise, row 3: logistic classifier
results, row 4: results of the grid structured CRF model with loopy belief propagation inference, row 5: result using one spa nning tree; row 6: result

using a majority voting on a set of 15 CRF spanning trees with randomly generated structures and the same set of optimized (learned) parameters .

TABLE I. PIXELWISE CLASSIFICATION ERROR (%) FOR BINARY DENOISING TASK. KH’06 STANDS FOR THE RESULTS PUBLISHED IN [23, 24].
COMPARISONS TO LOGISTIC CLASSIFIER AND GRID-STRUCTURED CRF MODEL WITH LOOPY BELIEF PROPAGATION INFERENCE (LBP) ARE ALSO SHOWN.
FOR LBP INFERENCE CASE WE AVERAGE OVER FIVE DIFFERENT RUNS EACH ON 160 TEST SAMPLES. MEAN ± STANDARD DEVIATION IS SHOWN FOR OUR

RESULTS AND POB’09 RESULTS THAT ARE AVERAGED OVER FIVE RUNS TOO

Unimodal Bimodal

Logistic regression based classifier 14.72±0.02 23.10±0.04

Markov Random Field (KH’06) 2.35 7.00

Discriminative Random Fields (KH’06) 2.30 6.21

LBP (MPM estimates) 2.65±0.11 6.04±0.09

Majority voting on a set of spanning trees (MPM estimates, a set of 15
spanning trees), tree structure is memorized

3.37±0.01 5.81±0.06

Majority voting on a set of spanning trees (MPM estimates, a set of 15
spanning trees), tree structure is not memorized

3.38±0.04 5.80±0.02

images. Therefore, each data subset contains 200 images.
The unary and pairwise features are defined similar to [23,

24]. We used 𝑓𝑖
𝑛𝑜𝑑𝑒 = [1, 𝐼𝑖] and 𝑓𝑖𝑗

𝑒𝑑𝑔𝑒
= [1, |𝐼𝑖 − 𝐼𝑗|] ,

where 𝐼𝑖 is the pixel “i” intensity. We used slightly
modified 5-fold cross-validation, in which we train the
model on one fold and test the model on the remaining k-1
folds. Each fold has 40 images consisting of 10 images
corresponding to each reference image. Therefore, we
report average performance over five runs each on 160 test
images. The results for the task of denoising images
corrupted with bimodal noise are shown in Figure 3.

Similar statistics was obtained for the task of denoising
images corrupted with unimodal Gaussian noise.
Comparison of rows 4 and 6 in the Figure 3, as well as the
summary in Table 1, show that the tree-structured
approximation for CRF produces comparable level of
performance with the grid-structured CRF model that uses
LBP inference. Results produced when the structure of trees
is memorized and when it is not, are of comparable quality.

B. Real-world images: structure detection

We used the dataset that was presented in [23, 24]. The
training and testing datasets contain 108 and 129 images
respectively, each of size 256×384 pixels, from the Corel
image database. Each image was divided into non-
overlapping patches of 16×16 pixels. The goal was to label
each patch as structured (man-made) or non-structured
(natural background). There are 30710 “non-structured”
pixel patches and 10762 “structured” pixel patches in the
training dataset. The testing dataset contains 43164 “non-
structured” patches and 6372 “structured” patches.

Each pixel patch was originally characterized with a
14-dimensional feature vector computed using orientation
and gradient magnitude based features similar to as
described in [24]. The feature vector contains a
combination of single-scale and multi-scale features. The
number of scales was chosen to be 3. Multi-scale features
of the pixel patch were extracted from orientation
histograms of blocks sizes 16×16, 32×32, and 64×64
centered on the lowest scale block that covers the 16×16
pixel patch. For each image patch, the gradients at pixels
contained in the blocks are used to compute histograms of
gradient orientations. Each count in the histograms is

weighted by the gradient magnitude at that pixel. The
histograms were smoothed using kernel smoothing. From
the smoothed histogram the first and third heaved central
shift moments were extracted. Two additional features
related to each scale were computed as well. The first is
|cos(𝑝1)| and the second is given by |sin(𝑝1 − 𝑝2)|, where
𝑝1 is the location of the highest peak of the orientation
histogram, and 𝑝2 is the location of the second highest
peak of the histogram. This feature favors the presence of
near right-angle junctions, which are more likely to be
associated with man-made structures. 60 bins were used to
encompass the angular range of [-π, π]. Two interscale
features were computed to facilitate detection of
continuing line or near right angle present at multiple
scales. These features were computed between different

scales as |cos 2(𝑝1
𝑖 − 𝑝1

𝑗
)|, where 𝑝1

𝑖 is the location of the

highest peak at scale i. The differences between values
corresponding to the first and second and the first and
third scales were used. Then, this 14-dimensional feature
vector is expanded with quadratic mapping into a 119-
dimensional feature vector corresponding to each pixel
patch. Pairwise feature vectors were obtained by
concatenating the expanded patch feature vectors.

We compared the performance of the two
approximation approaches based on an ensemble of
spanning trees with the results presented in [23, 24, 25]
and the grid-structured CRF model with LBP inference.
We note that the false positive rate reported in [23, 24]
does not count as false positive (FP) a misclassification
that is adjacent to a block with ground truth labeled
“structured.” In the results shown in Table 2 and in Figure
4, we follow the convention in [23, 24]. It is worth
mentioning that the majority of false negatives correspond
to small scale objects or flat surfaces (e.g., smooth roofs
and walls), which is a matter of designing better features,
better labeling and partitioning of the training images. The
precision obtained with the grid-structured CRF model and
LBP inference is 74.64% over the test dataset. The
approximation based on majority voting on a set of 15
spanning trees without memorizing tree structure has a
precision of 83.24%, while the approximation that
memorizes tree structure has a precision of 79.95%. The
approximation based on a cascade of spanning trees gives
a precision of 79.27% [25]. Thus the last three

TABLE II. DETECTION RATES (DR) AND FALSE POSITIVE RATES (FP) FOR STRUCTURE DETECTION PROBLEM OVER THE TEST SET CONTAINING 129

IMAGES. KH’06 STANDS FOR THE RESULTS PUBLISHED IN [23,24,25]. COMPARISONS OF MAJORITY VOTING ON A SET OF 15 SPANNING TREES AND GRID-
STRUCTURED CRF MODEL WITH LOOPY BELIEF PROPAGATION INFERENCE (LBP) ARE ALSO SHOWN

DR (%) FP (per image)

Markov Random Field (KH’06) 58.35 2.44

Discriminative Random Fields (KH’06) 72.54 1.76

LBP (MPM estimates) 85.30 14.32

Majority voting on a set of 15 spanning trees (MPM estimates),
tree structure is memorized

88.01 10.90

Majority voting on a set of 15 spanning trees (MPM estimates),
tree structure is not memorized

90.52 9

MPM estimates using a hierarchical cascade of spanning trees
(SK’14), tree structure is not memorized

91.75 11.85

Fig. 4. Example results for structure detection task using a majority voting on a set of 15 CRF spanning trees with randomly generated structures.

Spanning tree structures used during learning are not memorized; the same optimized set of parameters is used for all randomly generated spanning
trees. True positives are highlighted in green, false positives are in red, false negatives are in yellow.

approximations based on spanning trees have shown better
detection rate and precision than the ones produced by the
original model with LBP inference.

The performance of the investigated approximations
that do not memorize tree structure is slightly better than
that of the model with memorized structure of the
spanning trees. We hypothesize that the robustness towards
edge removal in the original loopy model in the process of
tree construction and towards the possibility of presence of
the same edge in multiple trees is the result of combination
of two factors. The first is that different spanning trees in
ensemble provide alternative pathways between node
clusters of the original graph model. This compensates for
removed edges in the original model. The second is the use
of the same set of tree parameters, 𝜃∗, that is optimized for
a variety of randomly generated spanning trees. This leads
to a parameter template that is more robust towards
missing or duplicated edges.

IV. DISCUSSION

We have investigated an approximation approach to
learning and inference in CRF using a decomposition of
the original grid-structured graph based on a set of
randomly sampled spanning trees. The results on two
synthetic and real-world imagery datasets have
demonstrated better performance of the investigated
approximation approach than the performance of the
original grid-structured model with LBP probabilistic
inference. The interesting finding is that the approach that
does not memorize the structure of spanning trees has
shown slightly better performance than the model with the
memorized tree structures. This is similar to the finding in
[25] that investigated an approximation based on a cascade
of spanning trees. This finding will be the subject of
further investigation as well as approximations based on the
trees with thicker treewidth (e.g., [5, 6, 7, 8]), which are still
computationally tractable.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of
Energy through the LANL LDRD Program.

REFERENCES

[1] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields:
probabilistic models for segmenting and labeling sequence data,” In:
Proceedings of the 18th International Conference on Machine Learning
(ICML), 2001.

[2] J.M. Hammersley and P. Clifford, “Markov fields on finite graphs,”
unpublished, 1971.

[3] J. Besag, “Spatial interactions and the statistical analysis of lattice
systems,” Journal of the Royal Statistical Society, Series B, 36(2):192-
236, 1974.

[4] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann, 1998.

[5] F.R. Bach and M.I. Jordan, “Thin junction trees,” in Advances in Neural
Information Processing Systems (NIPS), 2001.

[6] A. Globerson and T. Jaakkola, “Approximate inference using planar
graph decomposition,” in Advances in Neural Information Processing
Systems (NIPS), 2006.

[7] N.N. Schraundolph and D. Kamenetsky, “Efficient exact inference in
planar Ising models,” in Advances in Neural Information Processing
Systems (NIPS), 2008.

[8] D. Batra, A.C. Gallagher, D. Rarikh, and T. Chen, “Beyond trees: MRF
inference via outer-panar decomposition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2010.

[9] V. Kolmogorov and R. Zabih, “What energy functions can be optimized
via graph cuts,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(2):147-159, 2004.

[10] P. Dagum and M. Luby, “Approximating probabilistic inference in
Bayesian belief networks is NP-hard,” Artificial Intelligence, 60:141-
153, 1993.

[11] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(11):1222–1239, 2001.

[12] S.E. Shimony, “Finding MAPs for belief networks is NP-hard,”
Artificial Intelligence, 68: 399-410, 1994.

[13] J. Besag, “Statistical analysis of non-lattice data,” The Statistician,
24:179-195, 1975.

[14] J. Besag, “Efficiency of pseudo-likelihood estimation for simple
gaussian fields,” Biometrika, 64(3):616–618, 1977.

[15] C. Sutton and A. McCallum, “Piecewise pseudolikelihood for efficient
CRF training,” in Proceedings of the 24th International Conference on
Machine Learning (ICML), 2007.

[16] C. Sutton and A. McCallum, “Piecewise training for structured
prediction,” Machine Learning, 77(2-3):165-194, 2009.

[17] A.U. Asuncion, Q. Liu, A.T. Ihler, and P. Smyth, “Learning with blocks:
composite likelihood and contrastive divergence,” in Proceedings of the
13th International Conference on Artificial Intelligence and Statistics
(AISTATS), 2010.

[18] M. Wainwright, T. Jaakkola, and A. Willsky, “MAP estimation via
agreement on (hyper)trees: message-passing and linear programming
approaches,” IEEE Transactions on Information Theory,
51(11):3697-3717, 2005.

[19] V. Kolmogorov, “Convergent tree-reweighted message passing for
energy minimization,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 28(10):1568-1583, 2006.

[20] P. Pletscher, C.S. Ong, and J.M. Buhmann, “Spanning tree
approximations for conditional random fields,” in Proceedings of the
12th International Conference on Artificial Intelligence and Statistics
(AISTATS), 2009.

[21] D.B. Wilson, “Generating random spanning trees more quickly than the
cover time,” in Proceedings of the 28th Annual ACM Symposium on
Theory of Computing (STOC), 1996.

[22] D.C. Liu and J. Nocedal, “On the limited memory BFGS method for
large scale optimization methods,” Mathematical Programming, 45:503–
528, 1989.

[23] S. Kumar and M. Hebert, “Discriminative fields for modeling spatial
dependencies in natural images,” in Advances in Neural Information
Processing Systems (NIPS), 2003.

[24] S. Kumar and M. Hebert, “Discriminative random fields,” International
Journal of Computer Vision, 68(2):179-201, 2006.

[25] A.N. Skurikhin, “Hierarchical spanning tree-structured approximation
for conditional random fields: an empirical study,” Lecture Notes in
Computer Science (LNCS), 8888:85-94, 2014.

